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1 Topologies

1.1 Definitions

We denote P(X) as the power set of X.

Definition. (Topology) Let X be a set. A topology on X is a collection of sets T ⊆ P(X)
such that
(i) ∅, X ∈ T ,
(ii) T is closed under (possibly uncountable) unions.
(iii) T is closed under finite intersections.

A set X with a topology T is called a topological space of X. An element of X is called a point
and elements of T are called open sets. If x ∈ U ∈ T we say U is an open neighbourhood of
x. Strictly we should always denote (X,T ) for a topological space, but when T is clear, we just
write X for the topological space.

Definition. (Continuity) If (X,TX) and (Y, TY ) are topological spaces then a function
f : X → Y is called continuous if for U ∈ TY , f

−1(U) ∈ TX .

Definition. (Homeomorphism) A function f : (X,TX) → (Y, TY ) is a homeomorphism
if it is continuous and has a continuous inverse.

Definition. If T ⊆ T ′ are topologies on X then we say that T is coarser and T ′ is finer.
The identity function d : (X,T ) → (X,T ′) is continuous.

1.2 Topologies from metrics

If (X, d) is a metric space, recall that a subset U ⊆ X is called open if for every point x ∈ U
there exists a ε > 0 such that Bε(x) ⊆ U .

Proposition. If Td is the subset of X which are open under the metric d, then (X,Td)
is a topological space. We will call this the topology on X induced by the metric d.

Proof. Tautologically we have that ∅ ∈ Td. Clearly we have that X ∈ Td too. Let {Uα}α∈I be a
collection of open sets in Td with a (possibly uncountable) index set I. Let

x ∈
⋃
α∈I

Uα.

Then x ∈ Uβ for some β ∈ I, so Uβ is open hence there exists a ε > 0 such that Bε ⊆ Uβ ⊆⋃
α∈I Uα, hence

⋃
α∈I Uα is open.

Now suppoes that I is finite, and x ∈
⋂

α∈I Uα. For each α there exists a εα > 0 such that
Bεα(x) ⊆ Uα. Take ε = infα∈I εα, so Bε(x) ⊆ Bεα(x) ⊆ Uα for all α, hence we have that
Bε(x) ⊆

⋂
α∈I Uα so it’s open. Hence T is a topology.
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Now we have lots of examples we can use for topological spaces. For example we have that
topology induced by the Euclidean metric on Rd which we will call the Euclidean topology. For
any X ⊆ Rd we can have a topology induced by the Euclidean metric too, like Q, [0, 1], (0, 1).

Proposition. If we have two metric spaces (X, dX), (Y, dY ) and we have f : X → Y , the
f is continuous in the metric space sense if and only if it is continuous in the topological
space sense (with the topologies induced by the metric dX and dY respectively).

Proof. Let f : X → Y be continuous in the metric space sense. Let U be an open set in TdY
so

we need to show that f−1(U) is open. Let x ∈ f−1(U), so f(x) ∈ U . Hence there exists an ε > 0
such that Bε(f(x)) ⊆ U . So since f is continuous there exists a δ > 0 such that if dX(x, x′) < δ,
then dY (f(x), f(x

′)) < ε. Hence f(Bδ(x)) ⊆ Bε(f(x)). So Bδ(x) ∈ f−1(U), hence f−1(U) is
open.

Now let’s do the converse and suppose that f : X → Y is continuous in the topological sense.
Fix some x ∈ X and ε > 0. Consider Bε(f(x)) which is open in Y . Then f−1(Bε(f(x))) is in
TdX

. It contains x so there exists a δ > 0 such that x ∈ Bδ(x), so

dX(x, x′) < δ =⇒ dY (f(x), f(x
′)) < ε.

So f is continuous in the metric sense.

Definition. Let (X,T ) be a topological space and x1, x2, · · · ∈ X say. We say that xn

convergences to x if for every open neighbourhood U of x there exists a N such that
xn ∈ U for all n ≥ N .

Proposition. If (X, d) is a metric space with topology Td then a sequence (xn) converges
in the metric sense if and only if it converges in the topological sense.

Proof. Suppose it convergens in the metric sense to x. Then for all ε > 0 there exists a N such
that for all n ≥ N we have that xn ∈ Bε(x). If U is a neighourhood of x then there there is some
ε such that the ball of radius ε centred at x is contained in U . Conversely if (xn) converges in
the topological sense to x, let ε > 0 and consider the open ball centred at x with radius ε. Now
Bε(x) is an open neighbourhood of x so there exists an integer N such that xn ∈ Bε(x) for all
n > N . Hence (xn) converges to x in the metric sense.

Consider R and (0, 1) with the Euclidean metric and topology. Then the two spaces are related,
by the function (0, 1) → R by tan−1 x which is invertible. Hence we say the two spaces are homeo-
morphic, and R ∼= (0, 1). However the two spaces are not isometric since R is not complete under
the Euclidean metric and (0, 1) is not. Hence the property of completeness is not a topological
property: it is a property induced by the metric.

Definition. (Discrete topology) Let X be a set. The discrete topology is the topology
Tdiscrete = P(X) (so every set is open).

Remark. Any function from (X,Tdiscrete) to any space si continuous. This toplogy can be induced

by the discrete metric, where d(x, y) =

{
1 x ̸= y

0 x = y
. So B 1

2
(x) = {x} so {x} is open, hence all
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the sets are open.

Definition. (Indiscrete topology) Let X be a set. The indiscrete topology Tindiscrete =
{∅, X} (as little as possible sets are open).

Remark. A function from any space to (X,Tindiscrete) is continuous. This topology does not
come from a metric unless X is a singleton set. This is because if x ̸= y then d(x, y) = ε > 0, so
y /∈ Bε(x) and since y is arbitrary, then Bε(x) = {x} = X.

Let X = {o, c}. Then let T = {∅, {o, c}, {o}} be a topology of X. This is called the Sierpinski
space. It as the property that every sequence converges to c. A continuous function f : T →
(X,TSierpinski) is exactly an open subset of Y .

Let X = R we’ll define the right order topology on X as

Tord = {(a,∞) | −∞ ≤ a ≤ ∞}.

Let {(a,∞)}a∈I be a collect of elements of Tord. Then⋃
a∈I

(a,∞) = (inf
a∈I

a,∞) ∈ Tord.

Similarly for finite I, ⋂
a∈I

(a,∞) = (max
a∈I

a,∞) ∈ Tord

1.3 Bases and subbases

Definition. (Basis) Let T be a topology of X. A basis, B ⊆ T for T is a subcollection
such that every element of T is a union of elements in B.

Definition. (Subbasis) Let T be a topology of X. A subbasis, S ⊆ T for T is a subcol-
lection such that every element of T is a union of sets which are finite intersections of
elements of S.

Lemma. Let f : (X,TX) → (Y, TY ) and S ⊆ TY is a subbasis. If f−1(U) is open for all
U ∈ S then f is continuous.

Proof. If V ⊆ TY , then V =
⋃

a∈I Va where Va ∈
⋂

b∈Ja
Ua,b with Ua,b ∈ S and Ja finite. Then

f−1(V ) =
⋃
a∈I

Va =
⋃
a∈I

( ⋂
b∈Ja

f−1(Ua,b)

)
∈ TX ,

by the axioms of the topology.

Consider the Euclidean topology on Rn. The collection B = {Br(x) | x ∈ Rn, r > 0} is a basis.
Likewise the collection of n-cubes everywhere are also a basis. Interestingly the set QB ⊆ B
with balls at rational points with rational radii is also a basis. This is interesting since QB is
countable while B is uncountable and P(Rn) is ℵ2.

5



Definition. (Closed set) Let (X,T ) be a topological space. A subset C ⊆ X is closed if
X \ C ∈ T .

Proposition. Let (X,T ) be a topological space and F = {C ⊆ X | C closed}. Then
(i) ∅, X ∈ F ;
(ii) F is closed under (possibly uncountable) intersections;
(iii) F is closed under finite unions.

Proposition. A function f : X → Y between topological spaces is continuous if and
only if the preimage of every closed set is closed.

Definition. Let (X,T ) be a topological space. Let A ⊆ X be a subset of X. Then
(i) The closure Ā is the smallest (by inclusion) closed set containing A so

Ā =
⋂

S closed,A⊆S

S.

(ii) We say that A is dense in X if A = Ā.
(iii) The interior Å is the largest open set contained in A so

Å =
⋃

S open,S⊆A

S.

Definition. (Limit point) Let X be a topological space and A ⊆ X. A limit point of A
is a point in X which is a limit of a sequence in A.

Proposition. If C is a closed subset of (X,T ), then the limit points of C lie in C.

Proof. Let {xn} be a sequence in C with limit x∞. If x∞ /∈ C, then x∞ ∈ X \ C which is open.
Then if xn → x∞ then we should have that xn ∈ X \ C for n ≥ N but xn ∈ C so xn /∈ X \ C
which is a contradiction.

Corollary. A limit point of a A lies in Ā.

For an example Q = R since any real number is a limit of a sequence of rational numbers.
We have that (0, 1) = [0, 1] too. The cocountable topology on R is the topology Tcountable =
{∅}∪ {R \C | C countable} Let {xn} be a sequence in R, for x ∈ R consider {x}∪ {R−{xn}} is
open and contains x. If xn → x, then xn must be in a U for all n ≥ N so xn = x for all n ≥ N .
Hence the convergent sequences are exactly the eventually constant sequences with the limits
being the value they are eventually constant to. So the limit points of a set A are A under this
topology. However almost all A is not closed. For example (0, 1) is not closed since R \ (0, 1) is
not countable. But the closure of (0, 1) must be closed, so it must be R hence the sense of limit
points and closure are actually two very different properties in topology instead of metric spaces.
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1.4 Hausdorff spaces

Definition. (Hausdorff) A space (X,T ) is Hausdorff if for x ̸= y ∈ X there are open
neighbourhoods x ∈ U , y ∈ V with U ∩ V = ∅.

Remark. This is the notion that points are seperated by open sets.

Lemma. If the topology T is induced by a metric then it is Hausdorff.

Proof. If x ̸= y then d(x, y) = s > 0. So consider U = Bs/2(x) and V = Bs/2(y). The triangle
inequality shows that U ∩ V = ∅ and we know all balls are open.

Proposition. If a space is Hausdorff then a sequence in X has at most 1 limit.

Proof. Let (xn) be a sequence in X. Suppose it has limits y ̸= z ∈ X. Let U and V be disjoint
local neighbourhoods sfor y and z respectively. Then xn ∈ U for all n ≥ N1 and xn ∈ V for all
n ≥ N2. So if we take that N = max{N1, N2} then for all n ≥ N , we have that xn ∈ U ∩ V
which is empty, hence we have a contradiction.

Proposition. If (X,T ) is Hausorff then points are closed.

Proof. Let x ∈ X. We want to show that {x} = {x}. Let y ̸= x. Let U, V be disjoint neighbour-
hoods of x and y respectively. We know that x ∈ X \V which is closed. Hence {x} ⊆ X \V . But
y /∈ V , so y is not in the closure of {x} hence the closure of {x} is just {x}, so {x} is closed.

Let’s see an example. Let X be an infinite set and consider the cofinite topology on X. Take two
non-empty open sets, so

(X \ F ) ∩ (X \ F ′) = X \ (F ∪ F ′)

which is non-empty since F ∪ F ′ is finite and X is infinite so the set on the RHS is non-empty
hence the space is not Hausdorff.

1.5 Defining new topologies on existing ones

We have three main ways to define new topologies when given a topology already.

1.5.1 The subspace topology

Definition. (Subset topology) Let (X,TX) be a topological space. Let Y ⊆ X a subset.
The subset topology on Y is

T |Y = {Y ∩ U | U ∈ T}.

Definition. (Subspace) A subspace of (X,T ) is a subset equipped with the subspace
topology.
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Proposition. The subset topology is a topology.

Proof. Simple exercise of the axioms.

Proposition. The inclusion map ι : (Y, T |Y ) → (X,T ) is continuous. In fact T |Y is the
constant topology on Y such that the inclusion map is continuous.

Proof. Let U ∈ T then ι−1(U) = U ∩ Y ∈ T |Y by definition. So it is continuous. Suppose
ι : (Y, T ′) → (X,T ) is continuous. For U ∈ T , ι−1(U) ∈ T ′ so T |Y ⊆ T ′.

A further point of view, a function f : (z, Tz) → (Y, T |Y ) is continuous if and only if ι ◦ f is
continuous.

Lemma. (Gluing Lemma) Let f : X → Y be a function between topological spaces.
(i) If {Uα}α∈I are open subsets which cover X and each f |Uα

: Uα → Y are continuous
(where Uα is given the subspace topology) then f is continuous.

(ii) If {Cα}α∈I is a finite collection of closed sets containing X and f |Cα
: Cα → Y is

continuous for each a ∈ I then f is continuous.

Proof. Let V ⊆ Y be open. We want to show that f−1(V ) is open. We know that

f−1(V ) = (
−1

V ) ∩X = f−1(V ) ∩

(⋃
α∈I

Uα

)
=
⋃
α∈I

f−1(V ) ∩ Uα

Since f |Uα are continuous, we have that f−1 |Uα is open in Uα in the subspace topology. So
there exists a W open in X such that f−1 |Uα (V ) = Uα ∩W hence this is the intersection on
open subsets of X so is open in X, hence since the union of open subsets is open f−1(V ) is open,
so f continuous.

The second part can be proved the same using the closed set definition of continuity.

If (X, d) is a metric space with topology Td and Y ⊆ X then Td |Y is the topology induced by
d |Y .

1.5.2 The quotient topology

Definition. (Quotient topology) Let (X,TX) be a topological space, ∼ an equivalence
relation on X and X/ ∼ is the set of equivalence classes, and π : X → X/ ∼ the
equivalence map. The quotient toplogy on X/ ∼ is

TX/∼ = {U ⊂ X/ ∼| π−1(U) ∈ TX}.

Proposition. TX/∼ is indeed a topology.
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Proof. ∅ = π−1(∅) ∈ TX so ∅ ∈ TX/∼. X = π−1(X/ ∼) ∈ TX so X/ ∼∈ TX/∼. Let {Uα} be a
collection of sets of TX/∼, then

π−1

(⋃
α∈I

Uα

)
=
⋃
α∈I

π−1(Uα),

and π−1(Uα) ∈ TX , so the union is too. Hence
⋃

α∈I Uα ∈ TX/∼. We have a similar proof for
finite intersections.

Proposition. The quotient map π : (X,TX) → (X/ ∼, TX/∼) is continuous and TX/∼ is
the finest topology for which this is true.

Proof. This is a tautology.

An alternative characterisation of the quotient topology is that f : X/ ∼→ Y is continuous if
and only if f ◦ π : X → Y is continuous.

Definition. For a continuous function g : (X,TX) → (Y, TY ) is a quotient map if it
surjective and U ∈ TY ⇐⇒ g−1(Y ) ∈ TX .
Given, this construct ∼ on X by x ∼ x′ ⇐⇒ g(x) = g(x′). There is an induced function
G : X/ ∼→ Y sending G([x]) = g(x).

Remark. This function G is a bijection and continuous with a continuous inverse. This means
that G is a homeomorphism, so X/ ∼ ∼= Y .

Let’s see an example on R. Consider x ∼ y ⇐⇒ x−y ∈ Z. What is R/ ∼? Consider f : R → R2

defined by x → (sin(2πx), cos(2πx)). This is a continuous map so f : R → S1 ⊆ R2 is also
continuous and surjective. By periodicity x ∼ y ⇐⇒ f(x) = f(y), so we get F : R/ ∼→ S1

which we can check is a homeomorphism.

Now take the example X = R × {0, 1} ⊆ R2 with the standard subspace topology. Let (x, i) ∼
(y, j) ⇐⇒ (x, i) = (y, j) or x = y ̸= 0. We can then think of X/ ∼ is a line with two origins.
We cannot draw X/ ∼ since it is not Hausdorff. Any neighbourhood of [(0, 0)]∼ intersects any
neighbourhood of [(1, 0)]∼ so not Hausdorff. Hence it is not subspace of any Euclidean space.

1.5.3 The product topology

For sets X,Y the projections functions are

πX :X × Y → X

(x, y) → x

and

πY :X × Y → Y

(x, y) → y

Definition. (Product topology) Let (X,TX) and (Y, TY ) be topological spaces. Then
product topology on X×Y consists of open sets U ⊆ X×Y such that for (x, y) ∈ U there
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is a V ∈ TX and W ∈ TY such that (x, y) ∈ V ×W ∈ U .

Proposition. This indeed is a topology and the sets V ×W are a basis for TX×Y .

Proof. Tautologically, we have that ∅ ∈ TX×Y . Taking V = X,W = Y we have that X × Y ∈
TX×Y . For a collection {Uα}α∈I of elements of TX×Y , let (x, y) ∈

⋃
α∈I Uα. Then (x, y) ∈ Uβ

for β ∈ I so there exists neighbourhoods of x, y with their product a subset of Uβ ⊆
⋃

α∈I Uα ∈
TX×Y . If I is finite and (x, y) ∈

⋂
α∈I Uα. Then (x, y) ∈ Vα × Wα ⊆ Uα for each α ∈ I. So

(x, y) ∈ (
⋂

α Vα)× (
⋂

α Wα) ∈
⋂

α Uα and since these intersections are finite, these intersections
are open.

Proposition. The projection maps

πX : (X × Y, TX×Y ) → (X,TX) πY : (X × Y, TX×Y ) → (Y, TY )

are continuous and TX×Y is the coarsest topology for which this is true.

Proof. Let V ∈ TX . Then π−1
X (V ) = V × Y , so this is open. Hence πX , πY are continuous.

Suppose that T ′ is a topology onX×Y such that πX and πY are continuous, then π−1
X (V ) = V ×Y

is open and π−1
Y (W ) = X ×W is open. So V ×W is open in T ′, so TX×Y ⊆ T ′.

The universal property of the product topology is that the function

f : (Z, TZ) → (X × Y, TX×Y )

is continuous if and only if πX ◦ f : (Z, TZ) → (X,TX) and πY ◦ f : (Z, TZ) → (Y, TY ) are
continuous. Equivalently, if f is componentwise continuous.
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